3.345 \(\int \frac{x^{5/2} (A+B x)}{a+b x} \, dx\)

Optimal. Leaf size=113 \[ \frac{2 a^2 \sqrt{x} (A b-a B)}{b^4}-\frac{2 a^{5/2} (A b-a B) \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{a}}\right )}{b^{9/2}}+\frac{2 x^{5/2} (A b-a B)}{5 b^2}-\frac{2 a x^{3/2} (A b-a B)}{3 b^3}+\frac{2 B x^{7/2}}{7 b} \]

[Out]

(2*a^2*(A*b - a*B)*Sqrt[x])/b^4 - (2*a*(A*b - a*B)*x^(3/2))/(3*b^3) + (2*(A*b - a*B)*x^(5/2))/(5*b^2) + (2*B*x
^(7/2))/(7*b) - (2*a^(5/2)*(A*b - a*B)*ArcTan[(Sqrt[b]*Sqrt[x])/Sqrt[a]])/b^(9/2)

________________________________________________________________________________________

Rubi [A]  time = 0.0540715, antiderivative size = 113, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 4, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {80, 50, 63, 205} \[ \frac{2 a^2 \sqrt{x} (A b-a B)}{b^4}-\frac{2 a^{5/2} (A b-a B) \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{a}}\right )}{b^{9/2}}+\frac{2 x^{5/2} (A b-a B)}{5 b^2}-\frac{2 a x^{3/2} (A b-a B)}{3 b^3}+\frac{2 B x^{7/2}}{7 b} \]

Antiderivative was successfully verified.

[In]

Int[(x^(5/2)*(A + B*x))/(a + b*x),x]

[Out]

(2*a^2*(A*b - a*B)*Sqrt[x])/b^4 - (2*a*(A*b - a*B)*x^(3/2))/(3*b^3) + (2*(A*b - a*B)*x^(5/2))/(5*b^2) + (2*B*x
^(7/2))/(7*b) - (2*a^(5/2)*(A*b - a*B)*ArcTan[(Sqrt[b]*Sqrt[x])/Sqrt[a]])/b^(9/2)

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^{5/2} (A+B x)}{a+b x} \, dx &=\frac{2 B x^{7/2}}{7 b}+\frac{\left (2 \left (\frac{7 A b}{2}-\frac{7 a B}{2}\right )\right ) \int \frac{x^{5/2}}{a+b x} \, dx}{7 b}\\ &=\frac{2 (A b-a B) x^{5/2}}{5 b^2}+\frac{2 B x^{7/2}}{7 b}-\frac{(a (A b-a B)) \int \frac{x^{3/2}}{a+b x} \, dx}{b^2}\\ &=-\frac{2 a (A b-a B) x^{3/2}}{3 b^3}+\frac{2 (A b-a B) x^{5/2}}{5 b^2}+\frac{2 B x^{7/2}}{7 b}+\frac{\left (a^2 (A b-a B)\right ) \int \frac{\sqrt{x}}{a+b x} \, dx}{b^3}\\ &=\frac{2 a^2 (A b-a B) \sqrt{x}}{b^4}-\frac{2 a (A b-a B) x^{3/2}}{3 b^3}+\frac{2 (A b-a B) x^{5/2}}{5 b^2}+\frac{2 B x^{7/2}}{7 b}-\frac{\left (a^3 (A b-a B)\right ) \int \frac{1}{\sqrt{x} (a+b x)} \, dx}{b^4}\\ &=\frac{2 a^2 (A b-a B) \sqrt{x}}{b^4}-\frac{2 a (A b-a B) x^{3/2}}{3 b^3}+\frac{2 (A b-a B) x^{5/2}}{5 b^2}+\frac{2 B x^{7/2}}{7 b}-\frac{\left (2 a^3 (A b-a B)\right ) \operatorname{Subst}\left (\int \frac{1}{a+b x^2} \, dx,x,\sqrt{x}\right )}{b^4}\\ &=\frac{2 a^2 (A b-a B) \sqrt{x}}{b^4}-\frac{2 a (A b-a B) x^{3/2}}{3 b^3}+\frac{2 (A b-a B) x^{5/2}}{5 b^2}+\frac{2 B x^{7/2}}{7 b}-\frac{2 a^{5/2} (A b-a B) \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{a}}\right )}{b^{9/2}}\\ \end{align*}

Mathematica [A]  time = 0.0602457, size = 101, normalized size = 0.89 \[ \frac{2 \sqrt{x} \left (35 a^2 b (3 A+B x)-105 a^3 B-7 a b^2 x (5 A+3 B x)+3 b^3 x^2 (7 A+5 B x)\right )}{105 b^4}+\frac{2 a^{5/2} (a B-A b) \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{a}}\right )}{b^{9/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^(5/2)*(A + B*x))/(a + b*x),x]

[Out]

(2*Sqrt[x]*(-105*a^3*B + 35*a^2*b*(3*A + B*x) - 7*a*b^2*x*(5*A + 3*B*x) + 3*b^3*x^2*(7*A + 5*B*x)))/(105*b^4)
+ (2*a^(5/2)*(-(A*b) + a*B)*ArcTan[(Sqrt[b]*Sqrt[x])/Sqrt[a]])/b^(9/2)

________________________________________________________________________________________

Maple [A]  time = 0.006, size = 126, normalized size = 1.1 \begin{align*}{\frac{2\,B}{7\,b}{x}^{{\frac{7}{2}}}}+{\frac{2\,A}{5\,b}{x}^{{\frac{5}{2}}}}-{\frac{2\,Ba}{5\,{b}^{2}}{x}^{{\frac{5}{2}}}}-{\frac{2\,Aa}{3\,{b}^{2}}{x}^{{\frac{3}{2}}}}+{\frac{2\,B{a}^{2}}{3\,{b}^{3}}{x}^{{\frac{3}{2}}}}+2\,{\frac{{a}^{2}A\sqrt{x}}{{b}^{3}}}-2\,{\frac{B{a}^{3}\sqrt{x}}{{b}^{4}}}-2\,{\frac{{a}^{3}A}{{b}^{3}\sqrt{ab}}\arctan \left ({\frac{b\sqrt{x}}{\sqrt{ab}}} \right ) }+2\,{\frac{B{a}^{4}}{{b}^{4}\sqrt{ab}}\arctan \left ({\frac{b\sqrt{x}}{\sqrt{ab}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(5/2)*(B*x+A)/(b*x+a),x)

[Out]

2/7*B*x^(7/2)/b+2/5/b*A*x^(5/2)-2/5/b^2*B*x^(5/2)*a-2/3/b^2*A*x^(3/2)*a+2/3/b^3*B*x^(3/2)*a^2+2/b^3*a^2*A*x^(1
/2)-2/b^4*a^3*B*x^(1/2)-2*a^3/b^3/(a*b)^(1/2)*arctan(b*x^(1/2)/(a*b)^(1/2))*A+2*a^4/b^4/(a*b)^(1/2)*arctan(b*x
^(1/2)/(a*b)^(1/2))*B

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(5/2)*(B*x+A)/(b*x+a),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.45752, size = 524, normalized size = 4.64 \begin{align*} \left [-\frac{105 \,{\left (B a^{3} - A a^{2} b\right )} \sqrt{-\frac{a}{b}} \log \left (\frac{b x - 2 \, b \sqrt{x} \sqrt{-\frac{a}{b}} - a}{b x + a}\right ) - 2 \,{\left (15 \, B b^{3} x^{3} - 105 \, B a^{3} + 105 \, A a^{2} b - 21 \,{\left (B a b^{2} - A b^{3}\right )} x^{2} + 35 \,{\left (B a^{2} b - A a b^{2}\right )} x\right )} \sqrt{x}}{105 \, b^{4}}, \frac{2 \,{\left (105 \,{\left (B a^{3} - A a^{2} b\right )} \sqrt{\frac{a}{b}} \arctan \left (\frac{b \sqrt{x} \sqrt{\frac{a}{b}}}{a}\right ) +{\left (15 \, B b^{3} x^{3} - 105 \, B a^{3} + 105 \, A a^{2} b - 21 \,{\left (B a b^{2} - A b^{3}\right )} x^{2} + 35 \,{\left (B a^{2} b - A a b^{2}\right )} x\right )} \sqrt{x}\right )}}{105 \, b^{4}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(5/2)*(B*x+A)/(b*x+a),x, algorithm="fricas")

[Out]

[-1/105*(105*(B*a^3 - A*a^2*b)*sqrt(-a/b)*log((b*x - 2*b*sqrt(x)*sqrt(-a/b) - a)/(b*x + a)) - 2*(15*B*b^3*x^3
- 105*B*a^3 + 105*A*a^2*b - 21*(B*a*b^2 - A*b^3)*x^2 + 35*(B*a^2*b - A*a*b^2)*x)*sqrt(x))/b^4, 2/105*(105*(B*a
^3 - A*a^2*b)*sqrt(a/b)*arctan(b*sqrt(x)*sqrt(a/b)/a) + (15*B*b^3*x^3 - 105*B*a^3 + 105*A*a^2*b - 21*(B*a*b^2
- A*b^3)*x^2 + 35*(B*a^2*b - A*a*b^2)*x)*sqrt(x))/b^4]

________________________________________________________________________________________

Sympy [A]  time = 37.846, size = 279, normalized size = 2.47 \begin{align*} \begin{cases} \frac{i A a^{\frac{5}{2}} \log{\left (- i \sqrt{a} \sqrt{\frac{1}{b}} + \sqrt{x} \right )}}{b^{4} \sqrt{\frac{1}{b}}} - \frac{i A a^{\frac{5}{2}} \log{\left (i \sqrt{a} \sqrt{\frac{1}{b}} + \sqrt{x} \right )}}{b^{4} \sqrt{\frac{1}{b}}} + \frac{2 A a^{2} \sqrt{x}}{b^{3}} - \frac{2 A a x^{\frac{3}{2}}}{3 b^{2}} + \frac{2 A x^{\frac{5}{2}}}{5 b} - \frac{i B a^{\frac{7}{2}} \log{\left (- i \sqrt{a} \sqrt{\frac{1}{b}} + \sqrt{x} \right )}}{b^{5} \sqrt{\frac{1}{b}}} + \frac{i B a^{\frac{7}{2}} \log{\left (i \sqrt{a} \sqrt{\frac{1}{b}} + \sqrt{x} \right )}}{b^{5} \sqrt{\frac{1}{b}}} - \frac{2 B a^{3} \sqrt{x}}{b^{4}} + \frac{2 B a^{2} x^{\frac{3}{2}}}{3 b^{3}} - \frac{2 B a x^{\frac{5}{2}}}{5 b^{2}} + \frac{2 B x^{\frac{7}{2}}}{7 b} & \text{for}\: b \neq 0 \\\frac{\frac{2 A x^{\frac{7}{2}}}{7} + \frac{2 B x^{\frac{9}{2}}}{9}}{a} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(5/2)*(B*x+A)/(b*x+a),x)

[Out]

Piecewise((I*A*a**(5/2)*log(-I*sqrt(a)*sqrt(1/b) + sqrt(x))/(b**4*sqrt(1/b)) - I*A*a**(5/2)*log(I*sqrt(a)*sqrt
(1/b) + sqrt(x))/(b**4*sqrt(1/b)) + 2*A*a**2*sqrt(x)/b**3 - 2*A*a*x**(3/2)/(3*b**2) + 2*A*x**(5/2)/(5*b) - I*B
*a**(7/2)*log(-I*sqrt(a)*sqrt(1/b) + sqrt(x))/(b**5*sqrt(1/b)) + I*B*a**(7/2)*log(I*sqrt(a)*sqrt(1/b) + sqrt(x
))/(b**5*sqrt(1/b)) - 2*B*a**3*sqrt(x)/b**4 + 2*B*a**2*x**(3/2)/(3*b**3) - 2*B*a*x**(5/2)/(5*b**2) + 2*B*x**(7
/2)/(7*b), Ne(b, 0)), ((2*A*x**(7/2)/7 + 2*B*x**(9/2)/9)/a, True))

________________________________________________________________________________________

Giac [A]  time = 1.15558, size = 155, normalized size = 1.37 \begin{align*} \frac{2 \,{\left (B a^{4} - A a^{3} b\right )} \arctan \left (\frac{b \sqrt{x}}{\sqrt{a b}}\right )}{\sqrt{a b} b^{4}} + \frac{2 \,{\left (15 \, B b^{6} x^{\frac{7}{2}} - 21 \, B a b^{5} x^{\frac{5}{2}} + 21 \, A b^{6} x^{\frac{5}{2}} + 35 \, B a^{2} b^{4} x^{\frac{3}{2}} - 35 \, A a b^{5} x^{\frac{3}{2}} - 105 \, B a^{3} b^{3} \sqrt{x} + 105 \, A a^{2} b^{4} \sqrt{x}\right )}}{105 \, b^{7}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(5/2)*(B*x+A)/(b*x+a),x, algorithm="giac")

[Out]

2*(B*a^4 - A*a^3*b)*arctan(b*sqrt(x)/sqrt(a*b))/(sqrt(a*b)*b^4) + 2/105*(15*B*b^6*x^(7/2) - 21*B*a*b^5*x^(5/2)
 + 21*A*b^6*x^(5/2) + 35*B*a^2*b^4*x^(3/2) - 35*A*a*b^5*x^(3/2) - 105*B*a^3*b^3*sqrt(x) + 105*A*a^2*b^4*sqrt(x
))/b^7